
Dusan Palider

Do not try any of the techniques discussed in this
presentation on a system you do not own.

It is illegal and you will get caught.

 Introduction

 OWASP & OWASP Top 10

 More on Injection & XSS

 Q&A

 do you use the internet?

 visit forums?

 use multiple tabs in your browser?

 use online banking?

 you are logged into your bank

 in a separate tab you visit a forum (or a webpage)

 in the forum/page someone placed a JS code that
executes and transfers money out of your account

 a very unsafe forum site or an evil page
 allows you to upload the script

 slightly unsafe bank site
 allows the script to execute.. but there may not be much

the bank can do here

 code specific to a bank
 which bank?

 HSBC
 Key Bank
 Chase
 Bank Of America

 www.owasp.org

 The Open Web Application Security Project

 “a … not-for-profit worldwide charitable organization
focused on improving the security of application
software”

http://www.owasp.org/

 top 10 vulnerabilities
 updated every year
 for 2010:

 A1: Injection
 A2: Cross-Site Scripting (XSS)
 A3: Broken Authentication and Session Management
 A4: Insecure Direct Object References
 A5: Cross-Site Request Forgery (CSRF)
 A6: Security Misconfiguration
 A7: Insecure Cryptographic Storage
 A8: Failure to Restrict URL Access
 A9: Insufficient Transport Layer Protection
 A10: Unvalidated Redirects and Forwards

 What:
 attacker gets the application to carry out a command

 How:
 we allow unsafe input to get into an interpreter & execute it as

a command

 What to do:
 canonicalize and validate user input
 encode application output
 use parameterized queries
 don’t call OS directly
 use ESAPI library
 use APIs that wrap OS

 What:
 attacker executes a script against a user

 How:
 we allow unsafe input containing a script to be carried

out against an unsuspecting user visiting a website

 What to do:
 canonicalize and validate user input

 encode application output

 use Microsoft’s AntiXSS library

 use ESAPI library

 What:
 attacker manages to impersonate another user

 How:
 we do not manage the session properly or use an unsafe

authentication

 What to do:
 clear out the session @ start and @ end
 do not store session ID in URL
 store and transport user credentials safely (SSL)
 ask user to re-authenticate before carrying out a

sensitive operation
 expire session after a timeout

 What:
 the application exposes a direct object reference to the

attacker, which allows the attacker to attack the
application

 How:
 use identifiers (such as primary keys) in

dropdowns/URLs/tables..

 What to do:
 create a mapping, so that way you don’t expose objects
 verify input against a white list
 validate user permissions to the action that was

requested

 What:
 attacker forces the browser to send a request to a target

website

 How:
 script is executed on the malicious site, hoping to attack

the target one

 What to do:
 re-authenticate before allowing a sensitive operation
 use a CSRF cookie to identify that the request is coming

from your page & verify it before processing
 use ESAPI
 use SessionID in Page.ViewStateUserKey and verify it

 What:
 default settings on an IIS/webserver/…

 leaking too much error information

 How:
 The infrastructure was not configured properly.

 We did not create user-friendly error messages.

 What to do:
 use custom errors in web.config

 do not allow debugging in web.config

 make sure all default accounts are disabled/protected

 What:
 encrypted data gets hacked (or data was never

encrypted)

 How:
 we don’t use (or incorrectly use) encryption

 What to do:
 do NOT write your own algorithm

 use hash of SHA-256 or better to hash passwords

 use AES, RSA to encrypt persisted data

 use ESAPI

 What:
 a user “guesses” a link in our application

 How:
 we do not check permissions for users landing on a page,

but rely on the page being “invisible” in menus

 What to do:
 block access to files never used in IIS
 use a permission matrix
 always validate role on PageLoad
 do NOT hide, but DISABLE links/buttons to screens

that the user should not see

 What:
 credentials or other data gets hacked while in transport

 How:
 did not use SSL or encryption (or weak encryption) to

protect the data

 What to do:
 use SSL when sending sensitive data/passwords

 use a secure SQL server connection (Encrypt=Yes)

 use correct encryption

 use ESAPI

 What:
 site is tricked into redirecting a user to an unsafe site

 How:
 we did not validate our forward, and an attacker tricked

the site into forwarding somewhere else

 What to do:
 do not forward

 if you have to forward, don’t combine the link w/ user
input

 check that the domain of the site matches

 allows an attacker supplied text be passed into an
interpreter, where the interpreter runs it as a
command, instead of treating it as a parameter

 SQL injection

 OS injection

 SOAP injection

 Xpath injection

 LDAP injection

 SMTP injection

 XML injection

 JS injection

 …

“select * from users where userID = ‘” + userFromSite + “’”
 if userFromSite is aaa’ OR ‘1’ = ‘1

 if userFromSite is aaa’; DROP TABLE users; --

“move file1.txt “ + fileNameFromUser
 if fileNameFromUser is file2.txt & delete c:*.* \quiet

 similar to injection – JS is executed against a user (web
browser acting as an interpreter)

 <SCRIPT>alert(‘Hello’);</SCRIPT>

 <SCRIPT>alert(document.cookie);</SCRIPT>

 never trust user input
 canonicalize user input (convert to a known encoding)
 validate user input on the server (white list)

 if fails, reject, do not filter

 encode data being shown to the user
 always use parameterized queries
 use prepared statements as much as you can

 do not generate them dynamically

 use existing APIs instead of direct calls to OS/other
interpreters

 restrict access as much as possible
 never trust the user

 Owasp & ESAPI – www.owasp.org

