


Warning

Do not try any of the techniques discussed in this
presentation on a system you do not own.

It is illegal and you will get caught.






F . ARTE
I A S







A quick example

you are logged into your bank
in a separate tab you visit a forum (or a webpage)

in the forum/page someone placed a JS code that
executes and transfers money out of your account



How?

a very unsafe forum site or an evil page
allows you to upload the script

slightly unsafe bank site

allows the script to execute.. but there may not be much
the bank can do here

code specific to a bank

which bank?
HSBC
Key Bank
Chase
Bank Of America



RTINS, WP
poes A S D T




OWASP

The Open Web Application Security Project

“a ... not-for-profit worldwide charitable organization
focused on improving the security of application
software”


http://www.owasp.org/

OWASP Top 10

top 10 vulnerabilities
updated every year

for 2010:
A1: Injection
A2: Cross-Site Scripting (XSS)
A3: Broken Authentication and Session Management
A4: Insecure Direct Object References
As: Cross-Site Request Forgery (CSRF)
A6: Security Misconfiguration
A7: Insecure Cryptographic Storage
AS8: Failure to Restrict URL Access
Ag: Insufficient Transport Layer Protection
Aio: Unvalidated Redirects and Forwards



A1 - Injection

What:

attacker gets the application to carry out a command

How:

we allow unsafe input to get into an interpreter & execute it as
a command

What to do:

canonicalize and validate user input
encode application output

use parameterized queries

don’t call OS directly

use ESAPI library

use APIs that wrap OS



A2 — XSS (Cross-Site Scripting)

What:

attacker executes a script against a user

How:
we allow unsafe input containing a script to be carried
out against an unsuspecting user visiting a website

What to do:
canonicalize and validate user input
encode application output
use Microsoft’s AntiXSS library
use ESAPI library



A3 - Broken Authentication and Session
Management

What:

attacker manages to impersonate another user

How:
we do not manage the session properly or use an unsafe
authentication

What to do:

clear out the session @ start and @ end
do not store session ID in URL
store and transport user credentials safely (SSL)

ask user to re-authenticate before carrying out a
sensitive operation

expire session after a timeout



A4 - Insecure Direct Object Reference

What:
the application exposes a direct object reference to the
attacker, which allows the attacker to attack the

application

How:
use identifiers (such as primary keys) in
dropdowns/URLs/tables..

What to do:
create a mapping, so that way you don’t expose objects
verify input against a white list
validate user permissions to the action that was
requested



As — CSRF (Cross-Site Request Forgery)
What:

attacker forces the browser to send a request to a target
website

How:

script is executed on the malicious site, hoping to attack
the target one

What to do:

re-authenticate before allowing a sensitive operation

use a CSRF cookie to identify that the request is coming
from your page & verify it before processing

use ESAPI
use SessionID in Page.ViewStateUserKey and verify it



A6 — Security Misconfiguration

What:

default settings on an IIS/webserver/...
leaking too much error information

How:
The infrastructure was not configured properly.
We did not create user-friendly error messages.

What to do:

use custom errors in web.config
do not allow debugging in web.config
make sure all default accounts are disabled/protected



A7 - Insecure Cryptographic Storage

What:

encrypted data gets hacked (or data was never
encrypted)

How:
we don’t use (or incorrectly use) encryption

What to do:
do NOT write your own algorithm
use hash of SHA-256 or better to hash passwords

use AES, RSA to encrypt persisted data
use ESAPI



A8 — Failure To Restrict URL Access

What:

a user “guesses’ a link in our application

How:
we do not check permissions for users landing on a page,
but rely on the page being “invisible” in menus

What to do:

block access to files never used in IIS
use a permission matrix

always validate role on Pagel.oad

do NOT hide, but DISABLE links/buttons to screens
that the user should not see



Ag - Insufficient Transport Layer
Protection

What:

credentials or other data gets hacked while in transport

How:
did not use SSL or encryption (or weak encryption) to
protect the data

What to do:
use SSL when sending sensitive data/passwords
use a secure SQL server connection (Encrypt=Yes)

use correct encryption
use ESAPI



A10 - Unvalidated Redirects and
Forwards

What:

site is tricked into redirecting a user to an unsafe site

How:

we did not validate our forward, and an attacker tricked
the site into forwarding somewhere else

What to do:

do not forward

if you have to forward, don’t combine the link w/ user
input

check that the domain of the site matches






[njection

allows an attacker supplied text be passed into an
interpreter, where the interpreter runs it as a
command, instead of treating it as a parameter



[njection types

SQL injection
OS injection
SOAP injection
Xpath injection
LDAP injection
SMTP injection
XML injection
JS injection









RTINS, WP
poes A S D T










¥ L

v ‘VA. NX
RN g PPN




¥ L

v ‘VA. NX
RN g PPN




Safe Practices
never trust user input

canonicalize user input (convert to a known encoding)

validate user input on the server (white list)
if fails, reject, do not filter

encode data being shown to the user
always use parameterized queries

use prepared statements as much as you can
do not generate them dynamically

use existing APIs instead of direct calls to OS/other
interpreters

restrict access as much as possible
never trust the user









